
CALCULATING SLOPE

Find the slope between the given points or on the graph.

- (1, 3) and (5, 8) (-2, 7) and (5, 4) (1, -3) and (0, 8)

- (-1, -9) and (4, 0) (-8, 8) and (-2, 8) (-4, 9) and (-4, -8)

PARALLEL & PERPENDICULAR

Circle whether each pair of equations is parallel, perpendicular, or neither.

slope:

 $\begin{cases} y = x + 3 \\ y = x - 2 \end{cases}$

parallel perpendicular neither

slope:

 $\begin{cases} y = -x \\ y = x + 4 \end{cases}$

parallel perpendicular neither

slope:

 $\begin{cases} 2x + 3y = 6 \\ 3x - 2y = 4 \end{cases}$

parallel perpendicular neither

slope:

 $\begin{cases} 4x + y = 6 \\ y = -4x - 2 \end{cases}$

parallel perpendicular neither

slope:

 $\begin{cases} y = 2x + 3 \\ 2x - y = 4 \end{cases}$

parallel perpendicular neither

slope:

 $\begin{cases} y = 3x + 3 \\ x - 3y = 9 \end{cases}$

parallel perpendicular neither

slope:

 $\begin{cases} y = \frac{2}{5}x + 3\\ 2x - 5y = 10 \end{cases}$

parallel perpendicular neither

slope:

 $\begin{cases} y = 5x + 3 \\ x + 4y = 8 \end{cases}$

parallel perpendicular neither

SOLVING MULTI-STEP EQUATIONS

Solve each equation. Simplify your answer.

$$3(x + 4) = 2.5(x - 6)$$

$$2(x - 5) + 7 = -3(2x - 6)$$

$$\frac{1}{2}(4x - 8) = \frac{3}{4}(8x + 4)$$

$$\frac{1}{2}x + 5 = \frac{2}{5}x - 8$$

$$\frac{2}{3}(5x + 6) = \frac{3}{2}(8x - 4)$$

$$\frac{1}{3}X + \frac{1}{4} = \frac{2}{3}X - \frac{1}{6}$$

SIMPLIFYING RADICALS

Simplify each radical expression.

$$\sqrt{4}$$

$$\sqrt{6}$$

$$\sqrt{8}$$

$$\sqrt{9}$$

$$\sqrt{10}$$

$$\sqrt{12}$$

$$\sqrt{18}$$

$$\sqrt{25}$$

$$\sqrt{28}$$

$$\sqrt{32}$$

$$\sqrt{40}$$

$$\sqrt{48}$$

$$\sqrt{50}$$

$$\sqrt{55}$$

$$\sqrt{60}$$

$$\sqrt{64}$$

$$\sqrt{72}$$

$$\sqrt{90}$$

$$\sqrt{99}$$

$$\sqrt{120}$$

$$\sqrt{150}$$

$$\sqrt{160}$$

$$\sqrt{200}$$

$$\sqrt{256}$$

$$\sqrt{300}$$

OPERATIONS WITH RADICALS

Simplify each radical expression.

$$\sqrt{2} + \sqrt{2}$$

$$4\sqrt{3} + \sqrt{3}$$

$$5\sqrt{6} + 2\sqrt{6}$$

$$\sqrt{2}$$
 - $\sqrt{2}$

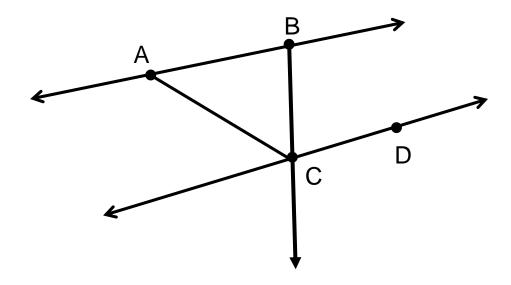
$$4\sqrt{3} - \sqrt{3}$$

$$5\sqrt{6} - 2\sqrt{6}$$

$$\sqrt{2} \cdot \sqrt{2}$$

$$4\sqrt{3} \cdot \sqrt{3}$$

$$5\sqrt{6} \cdot 2\sqrt{6}$$

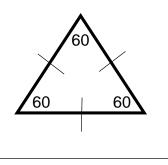

$$\sqrt{72} + \sqrt{50}$$

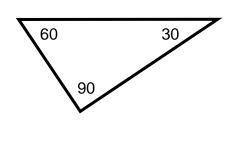
$$4\sqrt{45} - \sqrt{125}$$

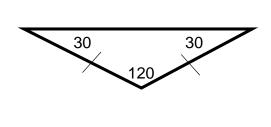
$$5\sqrt{27} + 2\sqrt{5}$$

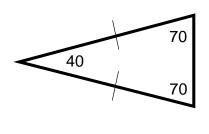
CLASSIFYING SEGMENTS, RAYS, & LINES

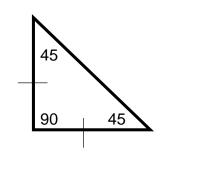
Determine the segments, rays, and lines from the diagram.

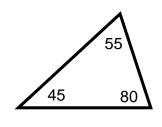

SEGMENTS	RAYS	LINES

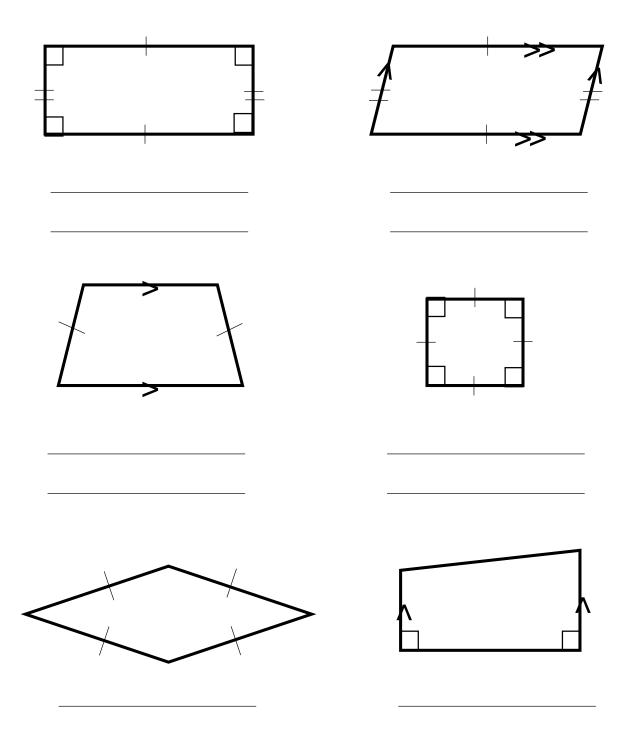

Determine whether each statement is true or false.

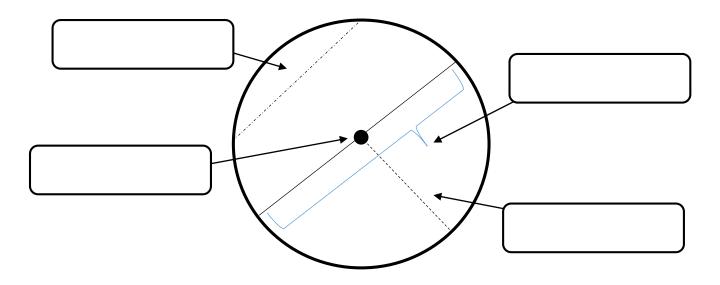

Two lines can intersect at exactly one point.	
Two lines can intersect at exactly two points.	
The are an infinite number of points on a line.	
A ray has an arrow at one end.	
A segment and a line are identical.	


TYPES OF TRIANGLES

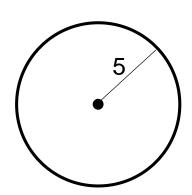

Name the triangle based on its sides and angles. Names include equilateral, isosceles, and scalene, acute, obtuse, and right.



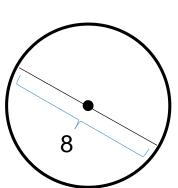



TYPES OF QUADRILATERALS

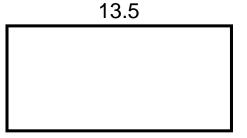
Determine if the quadrilateral is a square, rectangle, rhombus, trapezoid, isosceles trapezoid, parallelogram, or more than one of those names.

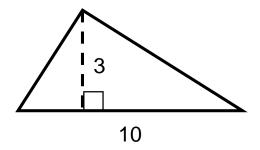


PARTS OF A CIRCLE


Given the circle, name each part.

Find the circumference and area of each circle.

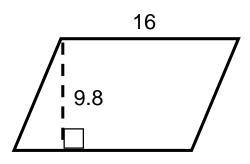

Circumference: $C = 2\pi r$ Area: $A = \pi r^2$


Circumference: $C = \pi d$ Area: $A = \pi r^2$

AREA FORMULAS

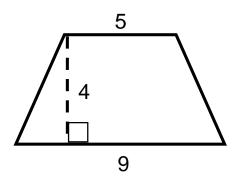
Calculate the area of each figure.

4



rectangle

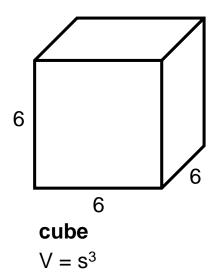
$$A = Iw$$

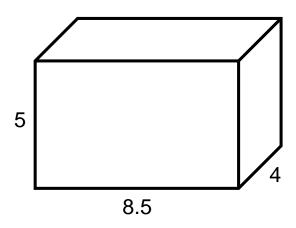

triangle

$$A = \frac{1}{2}bh$$

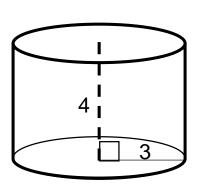
parallelogram

$$A = bh$$

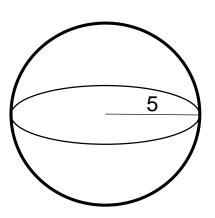



trapezoid

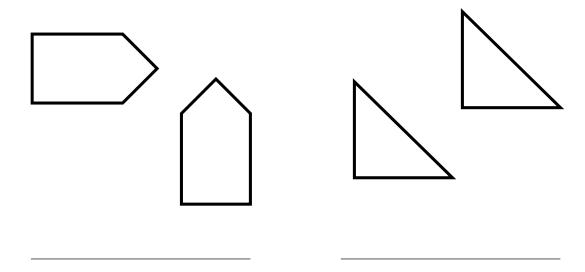
$$A = \frac{1}{2}h(b_1 + b_2)$$

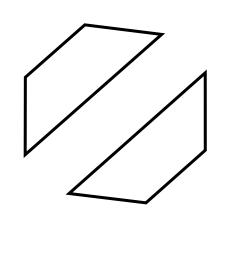

VOLUME FORMULAS

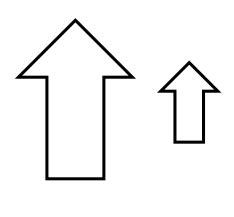
Calculate the volume of each figure.



rectangular prism V = lwh

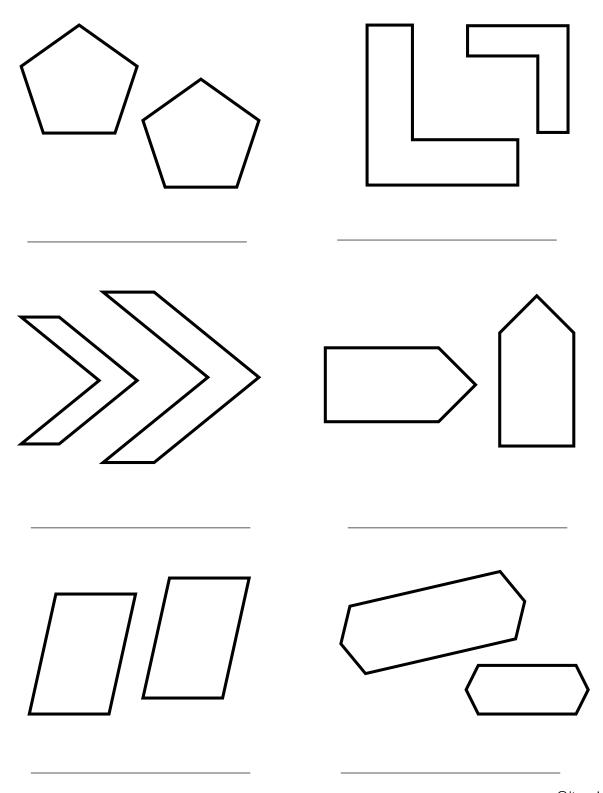

cylinder $V = \pi r^2 h$




sphere $V = \frac{4}{3}\pi r^3$

TRANSFORMATIONS

Determine the type of transformation shown in each diagram as a translation, rotation, reflection, or dilation.



CONGRUENT OR SIMILAR

Determine whether the figures shown are congruent or similar.

